Five- and Six-Coordinate Nitrogen in Azaborane Clusters

Peter Paetzold

Institut für Anorganische Chemie, Technische Hochschule Aachen, D-52056 Aachen, Germany

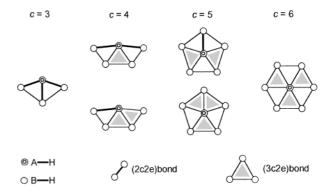
Fax: (internat.) + 49(0)241/888-8288 E-mail: peter.paetzold@ac.rwth-aachen.de

Received October 7, 1997

Keywords: Azaboranes / Six-coordinate nitrogen / Deltahedral clusters / Cluster opening / Cluster closure

In the majority of known azaboranes $N_a B_b H_c$ and their derivatives, the coordination number of the nitrogen atoms within the cluster does not exceed the classical values of 3 or 4. In the azaboranes $closo\text{-NB}_9 H_{10}$, $nido\text{-NB}_{10} H_{13}$, and $closo\text{-NB}_9 H_{10}$, $nido\text{-NB}_{10} H_{13}$, and $closo\text{-NB}_9 H_{10}$.

 $NB_{11}H_{12}$ and in their derivatives, however, the nitrogen atoms are 5- or 6-coordinate and thus represent a novel bonding situation. The synthesis, structure, and reactivity of these azaboranes are reviewed in this article.


Introduction

Azaboranes $N_a B_b H_c$ are closed deltahedral borane clusters or fragments thereof, in which at least one BH vertex is replaced by an NH vertex. Azaborates are the corresponding anions $[N_a B_b H_c]^{n-}$. Derivatives of azaboranes are formed by the addition of Lewis bases L to give $N_a B_b H_c L_d$ or by the substitution of hydrogen atoms by anionic groups X to give $N_a B_b H_c X_d$ (X = F, OR, NR₂, R etc.). Heteroazaboranes $S_a N_b C_c B_d H_e M_f$ are those azaboranes in which BH vertices have been replaced by S, CH, M etc.; the symbol M in this context means the fragment of a transition-metal complex with the metal atom being incorporated into the cluster skeleton.

If the bonding within borane clusters is described in terms of localized bonds, then electron deficiency makes it necessary to take skeletal three-centre, two-electron [(3c,2e)] bonds into account in addition to the more usual two-centre, two-electron [(2c,2e)] bonds. The skeletal coordination number, called *connectivity* (c), may exceed the value c=3; this value would allow a skeletal atom to form four tra-

ditional (2c,2e) bonds, including one radial (2c,2e) bond between the skeletal atom and its *exo* ligand. Values of c = 3-5 are usually encountered in borane clusters, and c = 6 is found in a few cases. With c > 3, (2c,2e) bonds are no longer sufficient for the description of bonds. It may be de-

Figure 1. Localized bonds for a skeletal atom A with different connectivities of A

Peter Paetzold, born in 1935, received his doctoral degree on his work with Egon Wiberg at the Ludwig-Maximilians-Universität in Munich in 1961. He became Professor of inorganic chemistry and Director of the Institut für Anorganische Chemie at the Rheinisch-Westfälische Technische Hochschule in Aachen in 1968. He focused his interest on synthetic, structural and mechanistic aspects of boron chemistry. Due to his work, major progress was achieved in the chemistry of azidoboranes (the analogues of carbonic azides), iminoboranes (the analogues of alkynes, presenting a BN triple bond), boron-nitrogen ring compounds (the analogues of cyclobutadiene, benzene, Dewar benzene, and cyclooctatetraene), azadiboriridines (the analogues of cyclopropenyl cations, presenting a BB bond of unexpected basicity), and azaborane clusters (the analogues of dicarbaborane clusters, presenting five- and six-coordinate nitrogen). The analogy of the couples BN and CC, also of the couples BO and CN, is the common thread running through his work.

MICROREVIEWS: This feature introduces the readers to the authors' research through a concise overview of the selected topic. Reference to important work from others in the field is included.

MICROREVIEW P. Paetzold

Table 1. Formal charge $\delta_F(A)$ of skeletal atoms A=B, C, N, depending on the number t of (3c,2e) and y of (2c,2e) bonds at A (see Figure 1)

c	3	4	4	5	5	6
t/y	0/3	1/2	2/1	2/1	3/0	3/0
$\begin{array}{c} \delta_F(B) \\ \delta_F(C) \\ \delta_F(N) \end{array}$	-3/3 0 +3/3	-2/3 + 1/3 + 4/3	-1/3 + 2/3 + 5/3	-1/3 + 2/3 + 5/3	0 +3/3 +6/3	0 +3/3 +6/3

duced from Figure 1 that for c=4-6 at least one, two or three (3c,2e) bonds are necessarily present, respectively, provided the atom A obeys to the octet rule. (Note that connectivities c=3-6 correspond to overall coordination numbers of 4-7 by inclusion of the exo ligand.)

The discovery in 1963 that carbon atoms within the icosahedral C_2B_{10} skeleton of the carbaborane $C_2B_{10}H_{12}^{[1]}$ exhibited a connectivity c=5 (coordination number = 6) changed the traditional view of the bonding situation of

Figure 2. Azaboranes and azaheteroboranes with a nitrogen connectivity of 2 or 3 (read BR instead of BH in 1-6)

Table 2. Azaboranes and azaheteroboranes with nitrogen connectivity of 2 or 3

Vertices Type		Skeletal atoms	Number in Figure 2		
4	nido	NB ₃	1[5][6] 2[6]		
5	arachno	N_2B_3 SNB_3	3 [6] 4 [7] 5 [8]		
6	nido	N_2B_4	6 ^{[9][10]}		
8	arachno	N_2B_6	7 ^[11]		
8	hypho	\widetilde{SNB}_{6}^{0}	8 [12]		
9	nido	$NB_8 NB_7M$	9 ^[13] 10 ^[14]		
9	arachno	NB_8	11 ^[15] 12 ^{[13][16]}		
9	hypho	NB ₈	13[17]		
10	nido	$NB_9 NB_8M$	14 ^{[13][18][19][20][21][22] 15^[23] 16^[23] 17^[24]}		
10	arachno	NB ₉ N ₂ B ₈ NCB ₈ SNB ₈ NB ₈ M	18 ^{[21][25][26]} 19 ^[25] 20 ^[27] 21 ^[28] 22 ^[12] 23 ^[24]		
11	arachno	$NB_{10} NC_2B_8 SNB_9$	24 ^{[20][29][30]} 25 ^[31] 26 ^{[2][32][33]} 27 ^[30]		
11	hypho	SNB ₉ S ₂ NCB ₇	28 ^[30] 29 ^[34]		
12	nido	NB ₁₁	30 ^[35] 31 ^[35] [36]		
12	arachno	NCB_{10} NC_3B_8	32 ^[37] 33 ^[37]		
18	nido	NB_{17}	34 ^[38]		

carbon-containing molecules. Whereas the formal charge of boron changes from -1 to the more favourable value of 0as a result of an increase in its connectivity (Table 1), the formal charge of carbon may become +1 with a connectivity of c = 6 or even c = 5. Since carbon is more electronegative than boron and its real charge is less positive than that of boron, the B-C skeletal bonds must be highly polarized, and actually the border case c = 6 is not observed for carbon. Indeed, there is a strong tendency in the reactions of icosahedral carbaboranes to reduce the connectivity of carbon. The more electronegative nitrogen shows a formal charge of at least +4/3 or +5/3, when incorporated into a cluster skeleton with c = 4 or 5, respectively. Hence, a very large bond polarisation must be expected in corresponding azaboranes. Nevertheless, the carbaborane $NC_2B_8H_{11}$ with c(N) = 4 was synthesized as early as 1974^[2], followed in 1986 by the closed cluster molecule NB₉H₁₀^[3], and finally, the icosahedral cluster molecule NB₁₁H₁₂ in 1991. The discovery of NB₁₁H₁₂, which is isoelectronic with C₂B₁₀H₁₂, represented the first observation of the connectivity $c(N) = 5^{[4]}$. Certainly, the reactivity of the highly coordinated azaboranes is governed by their tendency to reduce the connectivity at nitrogen.

A great number of small azaboranes and heteroazaboranes clusters with c(N) = 2 and larger ones with c = 3 are known. The skeletal nitrogen atoms in these azaboranes are bonded in a way that may be interpreted only in terms of (2c,2e) bonds. A survey is given in Figure 2 and Table 2. In terms of Wade's rules, *nido*, *arachno*, and *hypho* clusters are present, although no *closo* species are found. Note that the same structural pattern, an icosahedral fragment, holds for all the molecules and anions 11-34. Note also that in cases of c(N) = 2(1-5, 7, 8, 13, 29, 32, 33) π bonds need to be taken into account in order to provide the nitrogen atom with an electron octet.

A much smaller number of azaboranes and heteroazaboranes with c(N) = 4, 5 have been described; Table 3 and Figure 3 present a synopsis. All these clusters are derived from three parent azaboranes, all of which are well-characterized: closo-NB₉H₁₀ (35), nido-NB₁₀H₁₃ (38), and closo-NB₁₁H₁₂ (43). It is intended here to review the synthesis, structure, and reactivity of these azaboranes with 5- and 6-coordinate nitrogen centres. Part of this chemistry has already been reviewed^{[50][51][52][53]}. We start with a section about synthetic procedures that still includes all of the azaboranes.

Synthesis

The commercially available decaborane, $B_{10}H_{14}$, is the starting material for the synthesis of the azaboranes **8–45**, presented in this section. The synthesis of the azaboranes **1–7**, which starts from the azadiboriridine NB_2R_3 or from iminoboranes RB(NR'), will not be discussed here. There are three synthetic possibilities that include a change of skeletal atoms: the addition (*insertion*) or the removal (*degradation*) of a skeletal atom or both (*degradative insertion*). In addition, there are two possibilities that involve a change only in the skeletal *arrangement*, and which go hand

Figure 3. Azaboranes and azaheteroboranes with nitrogen of connectivity 4 or 5

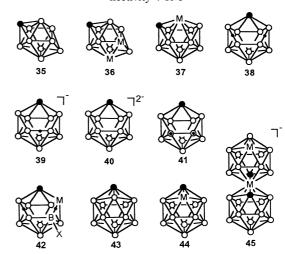


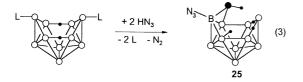
Table 3. Azaboranes and azaheteroboranes with nitrogen connectivity of 4 or 5

Vertices	Type Skeletal atoms		Number in Figure 3			
10 11 11	closo closo nido	NB ₉ NB ₇ M ₂ NB ₉ M NB ₁₀ NC ₂ B ₈ NB ₉ M	35[3][13][39] 36[40] 37[19][41] 38[31][42] 39[43][44] 40[43][44] 41[2][32][33][45] 42[46]			
12	closo	$NB_{11}\ NB_{10}M$	43 [4][21][36][47][48][49] 44 [43][44] 45 [44]			

in hand with a transformation in the direction $arachno \rightarrow nido \rightarrow closo$ (closure) or vice versa (opening). Changes in the ligand sphere or in the hydrogen bridge area (e.g. deprotonations) are not considered in this section.

Insertion

We describe here the insertion of sulphur S (into azaboranes), nitrenes NH or NR (into boranes), metal-complex fragments M (into azaboranes), and borylenes BH (into azaboranes). The insertion of elemental sulphur transforms the *nido* anion **15** into the *arachno* anion **27**, the sulphur atom contributing four electrons to the cluster [Eq. (1)]. The anion **15** is easily available from RNB₉H₁₁ (**14**) by applying the base 1,8-bis(dimethylamino)naphthalene (*proton sponge*)[30].


$$[RNB_9H_{10}]^- + 1/8 S_8 \rightarrow [S(RN)B_9H_{10}]^-$$
 (1)

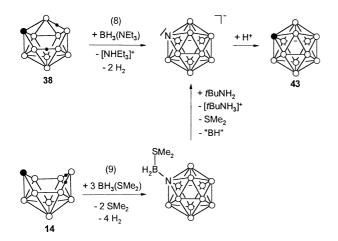
The insertion of a nitrene unit NR into a B_9 skeleton can be achieved by first transforming $B_9H_{13}(SMe_2)$ into $B_9H_{13}(NH_2R)$ followed by a dehydrogenation in boiling xylene to give products of type 14 [Eq. (2)]^{[13][21]}. [Note the identity of the structures 14 given in Eq. (2) and in Figure 2].

$$\begin{array}{c} R_{N}^{H} \\ \end{array}$$

MICROREVIEW P. Paetzold

The insertion of a unit NH (from HN₃) into $B_{10}H_{12}L_2$ (L = SMe₂) to give **25** with a bridging NH₂ group [c(N) = 2] is accompanied by an H/N₃ ligand exchange [Eq. (3)]^[31].

The reaction of CB_8H_{14} first with NaNO₂ and then with hydrochloric acid yields NCB₈H₁₃ (21); the stoichiometry of this insertion of an NH vertex is unknown^[28]. The insertion of metal cations into azaboranes, on the other hand, follows a clear cut stoichiometry. The 10-vertex *nido* species NB₉H₁₂ (14) is transformed into an 11-vertex species either of the *closo* type [37; M = CpCo^[19], (cymene)Ru^[41]; Eq. (4)] or the *nido* type (42; X = Cl, M = Cp*Ir^[46]). The 11-vertex *nido* species [NB₁₀H₁₂]⁻ (39) and [NB₁₀H₁₁]²⁻ (40) are transformed into the 12-vertex *closo* species NB₁₀H₁₁M [44; M = (Ph₃P)₂HRh^[43], (C₆Me₆)Ru, (Ph₃P)₂Ni^[44]; Eqs. (5), (6)] or [M(NB₁₀H₁₁)₂]⁻ (45; M = Co^[44]). The *arachno* 9-vertex species NB₈H₁₃ (11), finally, gives the *nido* species NB₈H₁₁M [23; M = (Me₂PhP)₂Pt^[24]; Eq. (7)].


$$\begin{split} NB_9H_{12} \,+\, 1/2 \, [(C_{10}H_{14})RuCl_2]_2 \to \\ NB_9H_{10}[Ru(C_{10}H_{14})] \,+\, 2 \,\, HCl \quad (4) \end{split}$$

$$[NB_{10}H_{12}]^- + (Ph_3P)_3RhCl \rightarrow NB_{10}H_{11}[RhH(PPh_3)_2] + PPh_3 + Cl^-$$
 (5)

$$[NB_{10}H_{11}]^{2-} + 1/2 [(C_6Me_6)RuCl_2]_2 \rightarrow NB_{10}H_{11}[Ru(C_6Me_6)] + 2 Cl^-$$
 (6)

$$NB_8H_{13} + [(PhMe_2P)_2PtCl_2] \rightarrow NB_8H_{11}[Pt(PMe_2Ph)_2] + 2 HCl$$
 (7)

The insertion of a BH unit into azaboranes plays an important role in the synthesis of the icosahedral species $NB_{11}H_{12}$ (43). It is possible to start from the *nido* clusters $NB_{10}H_{13}$ (38) or NB_9H_{12} (14) and insert one or two BH units, respectively [Eq. (8)^[4] and (9)^[48]]. The thermal dehydrogenation (140°C) of 38 or 14 in the presence of BH₃ yields the *closo* anion $[NB_{11}H_{11}]^-$, either directly [Eq. (8)^[4]] or via *closo*-(Me₂SBH₂)NB₁₁H₁₁ [Eq. (9)^[48]; the anion can then easily be protonated to give 43.

The synthesis of the *N*-organo *closo* 12-vertex derivative $RNB_{11}H_{11}$ can be achieved in one step from RNB_9H_{11} (14) [Eq. (10)]^[21].

$$RNB_9H_{11} + 2 BH_3(SMe_2) \rightarrow RNB_{11}H_{11} + 2 SMe_2 + 3 H_2$$
 (10)

The insertion of a molecule BH₃ without loss of H₂ should transform a *nido* into an *arachno* species, exemplified by the formation of the anion **24** from the anion **15** [Eq. (11)]^{[29][30]}.

$$[RNB_9H_{10}]^- + BH_3(thf) \rightarrow [RNB_{10}H_{13}]^- + thf$$
 (11)

Both a carbyne unit and a nitrene unit are inserted when nitriles R'CN are added to the anions $[B_{10}H_{13}]^-$ or $[C_2B_8H_{11}]^-$ to give the 12-vertex $\it arachno$ clusters $[N(R'C)B_{10}H_{13}]^-$ (32) and $[NC_2(R'C)B_8H_{11}]^-$ (33), respectively $^{[37]}$.

Degradation

The *nido* cluster NB_9H_{12} (14) is sensitive towards protic agents. One boron atom is removed by the attack of water in the presence of an acid to give *arachno*- NB_8H_{13} (11) [Eq. (12)]^[15].

$$NB_9H_{12} + 3 H_2O \rightarrow NB_8H_{13} + B(OH)_3 + H_2$$
 (12)

One boron vertex is removed from *closo*-RNB₉H₉ and recovered in the borazine (HBNR')₃, when primary amines are applied, either according to Eq. (13) in polar THF or according to Eq. (14) in less polar, noncoordinating dichloromethane giving the *nido* anion 9 or the *arachno* species 12, respectively^[13].

$$RNB_9H_9 + 2 R'NH_2 \rightarrow [R'NH_3][RNB_8H_9] + 1/3 (HBNR')_3 (13)$$

 $RNB_9H_9 + 2 R'NH_2 \rightarrow RNB_8H_{10}(NH_2R') + 1/3 (HBNR')_3 (14)$

The elimination of a BH_3 unit from the anions $[NB_{10}H_{14}]^-$ and $[NB_{10}H_{13}(N_3)]^-$ (24) on protonation may be accompanied by a cluster closure and is therefore mentioned in a later section.

Degradative Insertion

The first production of an azaborane with c(N) = 3 dates back to 1967, when two products, including the *arachno* cluster **19** $(X = H)^{[25]}$, were isolated from the reaction of decaborane and a thionitrosyl amine [Eq. (15)]. The fate of the expelled B atom is not known.

$$B_{10}H_{14}/Me_2NNS \rightarrow [SB_{10}H_{11}]^{-}/[(Me_2N)NB_9H_{12}]^{-}$$
 (15)

Going from thionitrosyl to nitrosyl made a series of azaboranes available by the application of $NaNO_2$ in acidic media [54]. The transformation of the carbaborate $[C_2B_9H_{12}]^-$ into a mixture of $NC_2B_8H_{13}$ (26) and $NC_2B_8H_{11}$ (41) marked the starting point for this method in 1974^[2], followed by the synthesis of NB_9H_{12} (14) in 1975;

the workup can be done with conc. H_2SO_4 [Eq. (16)]^[15] or with iodine, giving a 57% yield^[19].

$$B_{10}H_{14}/NaNO_2/H_2SO_4 \to NB_9H_{12}$$
 (16)

The diazaborane $N_2B_8H_{12}$ (20) can be prepared from NB_9H_{12} (14) by the same method. More stoichiometric clarity is achieved when the ionic nitrite is replaced by alkylnitrites [Eq. (17)]^[39]. The expelled boron vertex is then identified as trialkoxyborane.

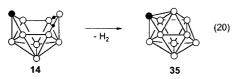
$$B_{10}H_{14} + 3 \text{ EtONO} \rightarrow NB_9H_{12} + B(OEt)_3 + H_2 + NO + NO_2$$
(17)

The thiaborane SB_9H_{11} was transformed by the action of BuONO into a mixture of SNB_6H_{11} (8) and SNB_8H_{11} (22)^[12], and $B_{18}H_{22}$ into $NB_{17}H_{20}$ (34)^[38].

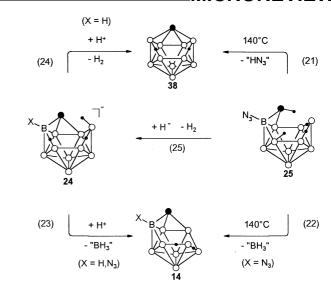
We formally consider the nitrogen atoms of bridging amino groups to be skeletal atoms with c=2 throughout this review article; the alternative position would be to view such groups as having the same functionality as two skeletal ligands, one of which contributes one and the other two electrons. The very first synthetic route to a larger azaborane was by the degradative insertion of an NHEt vertex by reacting $B_9H_{13}(SEt_2)$ with NH_2Et . The *hypho* cluster 13 ($L=NH_2Et$) was synthesized by this method in $1962^{[55]}$ and was structurally identified in $1963^{[17]}$. The expelled boron vertex was presumably incorporated into a borazine [Eq. (18)].

$$B_9H_{13}(SEt_2) + 3 NH_2Et \rightarrow$$

 $(EtHN)B_8H_{11}(NH_2Et) + SEt_2 + 2 H_2 + 1/3 (HBNEt)_3$ (18)


The 10% yield of NB_7H_9M [10; $M = Ir(PMe_3)_3$] from the action of N_2H_4 on $B_8H_{12}M'$ [$M' = Ir(CO)(PMe_3)_2$] is formally the result of a degradative insertion^[14].

A metal rather than a nitrogen vertex may be inserted under expulsion of a boron vertex. For example, $NB_8H_{11}M$ [17; $M = (C_6Me_6)Ru$] may be formed from NB_9H_{12} (14) and $[MCl_2]_2^{[24]}$ and azadirhoda-*closo*-decaborane 36 (M = Cp*Rh) from the *hypho*-borane 13 and $[MCl_2]_2$ [Eq. (19)]^[40].


$$(EtHN)B_8H_{11}(NH_2Et) + [Cp*RhCl_2]_2 + 4 NaH \rightarrow (EtN)B_7H_7(RhCp*)_2 + BH_3(NH_2Et) + 4 NaCl + 3 H_2$$
 (19)

Closure

Thermal dehydrogenation of nido-NB₉H₁₂ at 375–400°C makes closo-NB₉H₁₀ available [Eq. (20)]^[3], and the dehydrogenation of RNB₉H₁₁ follows the same pattern to give RNB₉H₉^[13].

The *arachno* species $NB_{10}H_{14}(N_3)$ (25) undergoes an elimination of HN_3 in boiling xylene to give the *nido* cluster 38 [Eq. (21)]; the degradation product 14, however, is the

predominant product component [Eq. (22)]^[31]. Upon protolysis, the 11-vertex *arachno* anions of type **24**, [RNB₁₀H₁₃]⁻ [from **15** by the insertion of BH₃, Eq. (11)] or [NB₁₀H₁₃(N₃)]⁻ (from **25** by deprotonation^[20]), are also predominantly degraded to give products of type **14** [Eq. (23)]^{[20][29][30]}; in the case of [NB₁₀H₁₄]⁻, the *nido* species **38** is the concurrent closure product [Eq. (24)]^[29]. The deprotonation of **25**, according to Eq. (25)^[20], represents a closure process that transforms one *arachno* structure (**25**) into another (**24**). Note that the skeleton of **24** can formally be derived from the corresponding *nido* skeleton of **30** or **31** by the removal of a vertex with c = 4, thus increasing the pentagonal aperture of **30** and **31** by one vertex; a vertex of c = 5 needs to be removed in order to transform **30** or **31** formally into **25** with a heptagonal aperture.

Opening

The opening of the *closo* species RNB₉H₉ (35) and RNB₁₁H₁₁ (43) by protic agents HX, neutral bases L, or anionic bases X^- gives *nido* products of the type RNB₉H₁₀X (16), RNB₁₁H₁₁L (30), or [RNB₁₁H₁₁X]⁻ (31), respectively, as discussed in a later section. The *nido* clusters RNB₉H₁₁ (14) are transformed into the *arachno* clusters RNB₉H₁₁L (18) by the addition of Lewis bases L; the term "opening" has only an electronic meaning in this case, since the topology of the 10-vertex cluster skeleton is the same for *nido* and *arachno* species.

Structure

The geometry of the parent aza-closo-boranes NB_9H_{10} (35) and $NB_{11}H_{12}$ (43) have been determined from Hartree-Fock SCF calculations with 3-21G an 6-31G* basis sets as well as from X-ray (35) and electron diffraction work (43) (Table 4). The structures represent a C_{4v} distorted bicapped tetragonal antiprism and a C_{5v} distorted icosahedron, respectively, as expected from Wade's cluster rules. We denote the three types of symmetrically equivalent boron atoms as *ortho*, *meta*, and *para* with respect to their distance from the nitrogen vertex. Typically, the nitrogen vertex of

 NB_9H_{10} is in one of the two capping positions with c=4. The highly symmetric structures, calculated for NB₉H₁₀ and NB₁₁H₁₂ and observed for NB₁₁H₁₂ in the gas phase, are also present in solution, according to NMR data; they are slightly distorted in crystalline NB₉H₁₀ and in two crystalline derivatives of NB₁₁H₁₂ (Table 4). Although the skeletal distances of the free molecules are in general longer than those in the crystal, the sequence is the same when going through the five zones of equivalent distances for C_{4v} or C_{5v} symmetry. The BN bonds, the shortest in both closo clusters, are distinctly shorter in the NB₉ than in the NB₁₁ skeleton, a phenomenon that is apparently related to the different connectivity of the nitrogen atom. A smaller effect of the same type and origin is observed for the boron atoms in the antipodal position, i.e. the apex opposite to the nitrogen atom.

A typical feature of both polyhedra is the short distance between the nitrogen atom and the polyhedral centre, if compared to the boron atoms. The penetration of the nitrogen atom into the cluster widens the B-B distances in the upper pyramidal basis making them the largest in the skeleton. In addition, the four (five) B-H bonds in the upper pyramidal basis are shifted away from the radial direction towards the nitrogen atom, thereby shielding it considerably.

six-coordinated nitrogen atoms (c = 5) into the skeletons of the *closo* 12-vertex species.

Although the formal charge of the nitrogen atom is highly positive, the real atomic charge is expected to be most negative at the electronegative nitrogen atom of NB₉H₁₀ or NB₁₁H₁₂, whereas the most positive positions should be the nitrogen-bound hydrogen atom and the boron atoms adjacent to the nitrogen atom (ortho position, o-B). This is confirmed by ab initio calculations of the atomic charges, which are quantitatively different depending on whether calculated according to the methods of either Mulliken or Löwdin (Table 5). Qualitatively, however, the results of the two calculations are in accord and indicate that the boron atoms in the *meta* position (*m*-B) are the most negatively charged ones, the antipodal boron atoms (para position, p-B) range between o-B and m-B, and the least positively charged hydrogen atoms are the antipodal ones. The large calculated dipole moments of ca. 5.1 (35) and 4.6 D (43) are oriented with their positives ends towards the negatively charged nitrogen atoms, demonstrating that all the 20 (24) atoms and particularly the hydrogen atoms on the symmetry axis contribute to the dipole moment.

The sequence m > p > o for the charge densities at the boron atoms (Table 5) does not parallel the ¹¹B-NMR chemical shifts, which form a series m > o > p with decreas-

Table 4. Calculated and experimental distances in closo-NB9 and -NB11 skeletons[a]

	NB ₉ H ₁₀ calcd. [56][57]	NB ₉ H ₁₀ X-ray ^[39]	NB ₁₁ H ₁₂ calcd. ^[56]	$NB_{11}H_{12} \ GED^{[47]}$	$\begin{array}{c} {\rm RNB_{11}H_{11}^{[b]}} \\ { m X-ray^{[21]}} \end{array}$	$NB_{11}H_{10}Y^{[c]}$ X -ray $^{[48]}$
Upper pyramid (B-N)	157.7	152	171.0	171.6(9)	171.9	172.2
Upper pyramidal basis	187.4	181	182.1	182.5(6)	179.6	179.7
Antiprismatic zone	180.6	175	176.7	179.1(5)	174.5	175.2
Lower pyramidal basis	186.9	177	180.8	179.1(5)	177.3	178.3
Lower pyramid	171.1	163	179.8	179.1(5)	177.0	178.1

 $^{[a]}$ Average of four (five) slightly different values in the four pyramidal zones and of eight (ten) values in the antiprismatic zone in the NB₉ (NB₁₁) skeleton in the case of crystal data $^{[b]}$ R = PhCH₂ $^{[c]}$ Group Y represents a $^{-}$ BH₂ $^{-}$ NEt $^{-}$ CH₂ $^{-}$ CH₂ $^{-}$ chain, bridging N and B2

The structures of the azametalla-*closo*-boranes NB_7H_8 - $(RhCp^*)_2$ ($36)^{[40]}$, $NB_{10}H_{11}[RhH(PPh_3)_2]^{[43]}$, and $NB_{10}H_{11}$ - $[Ru(C_6Me_6)]$ ($44)^{[44]}$ have also been investigated in the crystalline phase and represent typical 10- or 12-vertex *closo* structures, respectively.

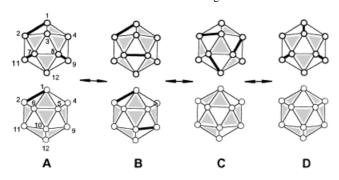
The azametallaboranes 37, NB₉H₁₀(CoCp*)^[19] and NB₉H₁₀[Ru(cymene)]^[41], represent the rare case of a 11-vertex *closo* species for which the structure has been confirmed. Typically, the metal atom is in the unique position with c = 6; this position is unfavourable for boron and impossible for nitrogen.

The *nido* 11-vertex molecules $RNB_{10}H_{12}$ ($R = NB_2HtBu_3$; **38**), $NC_2B_8H_{11}$ (**41**), and $NB_9H_{11}Cl(IrCp^*)$ (**42**) can be described as the expected icosahedral fragment structures with a pentagonal aperture, which is confirmed by crystal structure analysis [42][45][46].

There is no doubt that five-coordinated nitrogen atoms (c = 4) are incorporated into the borane cluster skeletons of the *closo* 10-, *closo* 11- and *nido* 11-vertex species and

ing field [in CD_2Cl_2 , standard $BF_3(OEt_2)$]: -21.7, -5.6, 62.4 (NB_9H_{10})^[39] and -11.9, -9.8, 2.7 ($NB_{11}H_{12}$)]^[4]. The downfield shift of p-B, particularly with NB_9H_{10} , is called the *antipodal effect*. It has been compared to the corresponding antipodal effect exhibited by the isoelectronic species XB_9H_9 and $XB_{11}H_{11}$ with $X = AlH^{2-}$, BH^{2-} , CH^{-} , S etc. The antipodal effect for NB_9H_{10} has been described as greatly influenced by the paramagnetic part of the chemical shielding; the HOMO–LUMO energy difference is also an important factor, as are the tangential p_x , p_y orbitals at the p-B atom, which are called NMR-active [57][58][59]. Since precise calculated geometrical data are available, computational methods such as IGLO allow the calculation of ^{11}B -NMR data which are in good accord with experimental results [47].

An analysis of the charge distribution in clusters should provide an understanding of which vertices will be attacked by electrophiles and which by nucleophiles. The products of ligand substitution, opening, and even degradation reac-


Table 5. Mulliken (a) and Löwdin (b) atomic charges of NB_9H_{10} and $NB_{11}H_{12}^{\,[56]}$

N	о-В	m-B	p-B	1-H	о-Н	т-Н	p-H
NB ₉ H ₁₀ (a) -1.073 (b) -0.234 NB ₁₁ H ₁₂ (a) -1.065 (b) -0.222	0.062 0.097	-0.135 -0.054	-0.077 0.009	0.291 0.443	$0.030 \\ 0.037$	$0.040 \\ 0.037$	0.031 0.029

tions may be predicted, provided that the first step of the reaction determines the products and that the ground-state polarities determine the transition state of that first step. In the case of NB_9H_{10} and $NB_{11}H_{12}$, one would expect nucleophiles to attack the *ortho* position and electrophiles the *meta* position. Such an expectation is met for nucleophiles, which exclusively attack at the *ortho* belt, whereas electrophiles attack either in the *para* or in the *meta*, but never in the *ortho* position (see following sections).

The binding electrons in closed boranes are delocalized over the whole skeleton in a way that is strongly suggestive of the π electrons in benzene-type molecules, and closed boranes have therefore been denoted as aromatic systems. In this context, azaboranes may be compared to pyridine. In the old-fashioned valence-bond description of benzene, the delocalization of the π electrons is achieved by introducing resonance between structures built up by localized (2c, 2e) π bonds. Such a procedure can also be applied to boranes, where the resonating structures are built up by localized (2c,2e) and (3c,2e) bonds^[60]. The icosahedral dodecaborate $[B_{12}H_{12}]^{2-}$ is given as an example. This anion may be built up by y (2c,2e) bonds and t (3c,2e) bonds. The 24 atoms contribute 60 valence orbitals and 50 valence electrons. From the balances 60 = 3t + 2y and 50 = 2t +2y, we find y = 15 and t = 10. There are twelve B-H (2c,2e) bonds leaving three (2c,2e) and ten (3c,2e) bonds to build up the cluster skeleton. Four resonance structures of different energy can be constructed (Figure 4). Each of the structures **A** and **B** of C_1 symmetry is related to 120 degenerate resonance structures, the structure C (C_3 symmetry) allows 40 and the structure **D** (C_{3v} symmetry) 20 degenerate structures, which altogether sum up to 300 resonating structures. (Note that the number of degenerate structures is equal to the ratio of the order of the group I_h to the order of the corresponding subgroup.) The number

Figure 4. Resonance formulae A-D of $[B_{12}H_{12}]^{2-}$, front and rear side of the icosahedral structure being shown for each

of structures would be increased if we allowed those which (a) contain also open instead of only closed (3c,2e) bonds, (b) contain edges without bonding interaction, (c) contain vertices not obeying the octet rule. In going from $[B_{12}H_{12}]^{2-}$ to the isoelectronic $NB_{11}H_{12}$ the degeneracy decreases and structures in which the nitrogen atom adopts one of the (2c,2e) bonds become favourable.

Reactivity

Little is known about the reactivity of the azametalla-closo-boranes with either an NB_7M_2 (36), NB_9M (37), or $NB_{10}M$ skeleton (44, 45). The same is true for the reactivity of the *nido* 11-vertex clusters $NC_2B_8H_{11}$ (41) and $NB_9H_{11}ClM$ (42). More is known about the reactivity of closo- NB_9H_{10} (35), closo- $NB_{11}H_{12}$ (43), and *nido*- $NB_{10}H_{13}$ (38).

Redox Reactions

The *N*-alkyl derivatives RNB₉H₉ and RNB₁₁H₁₁ are stable towards iodine and bromine, even if dissolved in liquid bromine^[49]. A mixture of RNB₁₁H₁₁ and liquid chlorine may be kept for a while at low temperature, but can undergo a spontaneous violent reaction. No doubt BN, BHal₃ and HHal are the thermodynamically stable products from a mixture of NB₁₁H₁₂ and excess Hal₂, but such a mixture is more or less metastable. Strong reduction agents like alkali metals do not react with RNB₁₁H₁₁.

Brønsted Acid/Base Reactions

The skeleton of the *closo* species RNB₉H₉ and RNB₁₁H₁₁ is stable if dissolved in strong acids such as triflic acid $F_3CSO_3H^{[49]}$; a proton/proton exchange cannot be excluded, however. The nitrogen-bound protons of the parent molecules NB₉H₁₀ and NB₁₁H₁₂ can be easily removed by bases, in the case of NB₁₁H₁₂ even with the weak base NEt₃, to give the anions [NB₉H₉]⁻ and [NB₁₁H₁₁]⁻. These anions can easily be alkylated by RI and RO₃SCF₃, respectively, if R represents an α -unbranched alkyl group [3][21][36]; bulky alkyl and aryl groups R cannot be fixed to the nitrogen atom of the anions, but such derivatives RNB₉H₉ and RNB₁₁H₁₁ are available from RNB₉H₁₁ by either dehydrogenation [Eq. (20)] or insertion of two BH units [Eq. (10)], respectively.

The *nido* cluster $NB_{10}H_{13}$ (38) can be deprotonated once or twice by hydride bases, depending on the stoichiometric amount of base. The protons are removed from the bridging positions, not from the NH group. The corresponding anions $[NB_{10}H_{12}]^-$ (39) and $[NB_{10}H_{11}]^{2-}$ (40) are isoelectronic with the anions $[C_2B_9H_{12}]^-$ and $[C_2B_9H_{11}]^{2-}$ and, like these, they offer a pentagonal open face which is isolobal with $C_5H_5^-$ and is ready, therefore, to form pentahapto bonds with transition-metal species M^{2+} . A third proton cannot be removed from $[NB_{10}H_{11}]^{2-}$. Interestingly, the *nido*-azadicarbaborane $NC_2B_8H_{11}$ (41) which is isoelectronic with $NB_{10}H_{13}$ can be deprotonated at the nitrogen atom, since bridging hydrogen atoms are absent; applying K_2CO_3 and MeI consecutively gives the corresponding N-

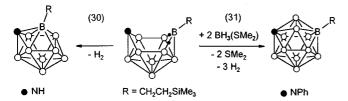
methyl derivative^{[32][45]}. Nevertheless, the terminal nitrogen atom and not one of the bridging protons becomes active when $NB_{10}H_{13}$ is added to the azadiboriridine NB_2tBu_3 to yield $(NB_2HtBu_3)NB_{10}H_{12}^{[42]}$.

Electrophilic Substitution

The *closo* clusters RNB₉H₉ (R = p-ClC₆H₄) and RNB₁₁H₁₁ (R = Me) react neither with triflic acid (as mentioned above) nor with methyl triflate. A mixture of one of the clusters, with methyl triflate as the solvent and triflic acid as a catalyst, however, results in a five- and six-fold methylation after four hours [Eqs. (26), (27)]^[49].

$$NB_9H_9 + 5 MeOTrf \rightarrow RNBH_4Me_5 + 5 HOTrf$$
 (26)

$$RNB_{11}H_{11} + 6 MeOTrf \rightarrow RNB_{11}H_5Me_6 + 6 HOTrf$$
 (27)


As expected from the cluster charge distribution, the *ortho* positions remain unattacked by the electrophile, whereas the *meta* and *para* positions are completely substituted. The same procedure transforms the *ortho*-dicarbaborane C₂B₁₀H₁₂ into C₂B₁₀H₂Me₁₀; all boron vertices in this product carry methyl groups, even those adjacent to carbon^[61]. If the methylation of the aza-*closo*-boranes is prolonged by 16 hours, one of the methyl groups in each of the products is replaced by a triflate group [Eqs. (28), (29)].

$$RNB_9H_4Me_5 + HOTrf \rightarrow RNB_9H_4Me_4(OTrf) + CH_4$$
 (28)

$$RNB_{11}H_5Me_6 + HOTrf \rightarrow RNB_{11}H_5Me_5(OTrf) + CH_4$$
 (29)

The triflate group is fixed to a *meta* position in the 10-vertex product, but to a *para* position in the icosahedral species. An electrocyclic mechanism via a six-membered cyclic transition state has been proposed for the reactions (28) and (29)^[49].

Although *ortho*-alkyl derivatives of NB_9H_{10} are not available by electrophilic alkylation, they are available, if one starts from $NB_9H_{11}R$ with the group R in the 9 position. The thermal dehydrogenation yields NB_9H_9R with R in *ortho* position [Eq. (30)]. The starting material can be synthesized from NB_9H_{12} and the corresponding alkenes by hydroboration^[22]. As expected, the 9-alkyl derivative $PhNB_9H_{10}R$ gives the *meta*-alkyl derivative $PhNB_1H_{10}R$ on ring closure with $BH_3(SMe_2)$ [Eq. (31)]^[30].

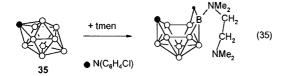
A singular alkylation at the *ortho* belt of the closed NB₁₁ skeleton is observed when the synthesis of NB₁₁H₁₂ from NB₉H₁₂ is performed with BH₃(NEt₃) instead of BH₃(SMe₂), according to Eq. (9). At 200 °C the product, expected from Eq. (9), is apparently not stable, and undergoes a further dehydrogenation; a B-C bond is formed from a CH₃ and a BH moiety [Eq. (32)]^[48]. An intermole-

cular dehydrogenation of this type has never been observed; the loss in entropy would be too great.

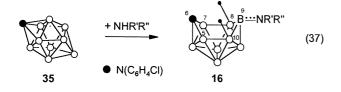
The bromination of the same *closo* species that were used for the methylation, yields either a fivefold-brominated or a monobrominated product when AlBr₃ acts as a Friedel—Crafts catalyst [Eqs. (33), (34)]^[49].

$$RNB_9H_9 + 5 Br_2 \rightarrow RNB_9H_4Br_5 + 5 HBr$$
 (33)

$$RNB_{11}H_{11} + Br_2 \rightarrow RNB_{11}H_{10}Br + HBr$$
 (34)


As expected, the bromination takes place in the *meta* and *para* position of the NB₉, but exclusively in the *para* position of the NB₁₁ skeleton. Iodination in the presence of AlCl₃ stops at the diiodination to give RNB₉H₇I₂, with iodine in the *meta* and *para* position, or at the moniiodation to give the *para* product RNB₁₁H₁₀I.

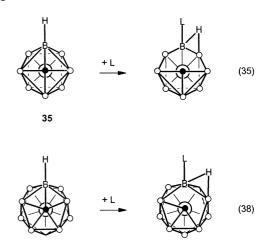
There is some similarity in the halogenation of the azaboranes RNB₉H₉ and RNB₁₁H₁₁ on the one hand and of the isoelectronic thiaboranes SB₉H₉ and SB₁₁H₁₁ on the other; these can be halogenated once, twice or three times, preferably in the *meta*, also in the *para*, but not in the *ortho* position [⁶²][⁶³][⁶⁴]. The isoelectronic carbaborates [CB₉H₁₀] and [CB₁₁H₁₂] also undergo a similar electrophilic halogenation to give [CB₉H₉Hal] (Hal = Cl, Br, I, in the *meta* position) or [CB₉H₅Hal₅] (Hal = Cl, Br, in the *meta* and *para* positions) [⁶⁵][⁶⁶][⁶⁷] and to give [CB₁₁H₁₁Hal] (Hal = Cl, Br, I, in the *para* position) or [CB₁₁H₆Hal₆] (Hal = Cl, Br, in the *meta* and *para* position) or [CB₁₁H₆Hal₆] (Hal = Cl, Br, in the *meta* and *para* position) [⁶⁸][⁶⁹][⁷⁰].


Cluster Opening by Bases

The 10-vertex aza-closo-borane RNB₉H₉ (**35**) can be opened by amines. Whereas simple tertiary amines like NEt₃, N*i*Bu₃ do not react with RNB₉H₉ (R = p-ClC₆H₄), the bifunctional tertiary amine Me₂N-CH₂-CH₂-NMe₂ (tmen) gives a 1:1 adduct via one of the basic nitrogen atoms, which attacks one of the *ortho* positions. The *closo* species is transformed into a *nido*-NB₉ skeleton that contains an unsymmetric hydrogen bridge without fluxional behaviour, according to NMR data at room temperature [Eq. (35)]^[23]. The same type of hydrogen bridge is present in the anions [RNB₉H₁₀]⁻ (**15**; R = Ph, PhCH₂), which are formed from RNB₉H₁₁ (**14**) by the addition of R'NH₂ (R' = tBu) and subsequent deprotonation of the adduct (**18**) by hydride [Eq. (36)]^[23]. The difference in reactivity

between ordinary tertiary amines and tmen is not understood.

The closo species RNB₉H₉ is degraded when an excess of primary or secondary amine is applied. A secondary amine like NHEt2 or NHiPr2 and even a primary amine with a bulky group like NH2tBu simply opens RNB9H9 without degradation, when an excess of amine is avoided. The hydrogen atoms of the reacting moieties BH and NH are found in the open face of the product [Eq. (37)]. Bridging positions B8-B9 and B10-B9 would be expected if the product RNB₉H₁₀(NR'R") was a nido cluster, whereas bridging positions B5-B10 and B7-B8 would indicate an arachno cluster. An electron count, according to Wade's rules, predicts a *nido* product RNB₉H₁₀X (14) if the ligand X behaved like a hydrogen atom, but would give an arachno product if X acted as a three-electron ligand, forming a σ and a dative π bond, due to a lone pair of X. The two nonexo-hydrogen atoms of the product, Eq. (37), were found by NMR methods to be predominantly in an endo position at B8 and B10, i.e. a position inbetween those typical for nido and arachno 10-vertex clusters. Such an electronic-hybrid situation was also concluded from the ¹¹B-NMR data^[23] apparently because of weak BN π bonding between the amino ligand and the cluster.



In the case of the *closo*-borane RNB₁₁H₁₁ (43), simple tertiary amines such as NEt₃ are added to the *ortho* position to give the *nido* cluster 30 by the migration of the former terminal hydrogen atom into a neighbouring bridge position in the open pentagonal face (R = Ph) [Eq. (38)]^[35].

$$PhNB_{11}H_{11} + NEt_3 \rightarrow PhNB_{11}H_{11}(NEt_3)$$
 (38)

The similarity of the steric course of reactions (35) and (37) is elucidated by observing the *closo* clusters along the main axes. The reduction of the connectivity at the nitrogen atom to c=3 involves the opening of one B-N bond in reaction (35), but of two B-N bonds in reaction (38). No B-B bond is opened during reaction (38), whereas three B-B bonds are opened and one B-B bond is closed during reaction (35), which can be considered to be the reverse of

the dehydrogenation, Eq. (30), with respect to the skeletal changes.

nido products of type **31** are formed when anions X^- are added to *closo*-RNB₁₁H₁₁ [Eq. (39)]^[35]. Substances MX as different as LiMe, LiBu, K[O*t*Bu], [N(PPh₃)₂]Cl, [S(NMe₂)₃]-[Me₃SiF₂] (X = F by elimination of Me₃SiF), and K[BHEt₃] (X = H by elimination of BEt₃) have been allowed to react with MeNB₁₁H₁₁.

$$MeNB_{11}H_{11} + MX \rightarrow M[MeNB_{11}H_{11}X]$$
 (39)

In the case of protic agents such as HOMe, the anion MeO^- is added to $RNB_{11}H_{11}$ (R=H, Me, Et, Ph), and the proton, the corresponding cation, is dissolved in the organic medium, e.g. CH_2Cl_2 . Efforts to isolate the free acid $H[RNB_{11}H_{11}(OMe)]$ resulted in a complete degradation of the cluster. The cluster anion can be precipitated, however, from solutions of the free acid by adding salts such as $[N(PPh_3)_2]Cl$, leaving HCl in the solvent^[36]. No deuterium is incorporated into the cluster if DOMe instead of HOMe is applied, proving that the bridging hydrogen atom in the anion 31 is one of the hydrogen atoms of the starting material 43 and that there is no hydrogen/deuterium exchange between the anion 31 and $DOMe^{[36]}$. A secondary amine such as the protic agent $HNEt_2$ yields the salt-type product $[H_2NEt_2][RNB_{11}H_{11}(NEt_2)]^{[35]}$.

We assume that the mechanism of the formation of anions **31** from **43** is best described by the reaction sequence (40), which starts with the addition of X^- to **43**, followed by a series of rearrangements of a hydrogen atom from an *endo* into a bridging position and vice versa. The second intermediate in this sequence corresponds to the isolated neutral adduct RNB₁₁H₁₁(NEt₃) (**30**). [Only the 6-vertex upper halves of the 12-vertex polyhedral anions are drawn in sequence (40).]

The anions $[RNB_{11}H_{11}X]^-$ (31) are remarkably stable in protic media including aqueous acids and bases. Efforts have failed to deprotonate the anion $[PhNB_{11}H_{11}(OH)]^-$ in order to study the oxo-ligand in the expected dianion $[PhNB_{11}H_{11}O]^{2-}$, even though the strongest bases have

been applied. A degradation of the anions 31 has never been observed.

To summarize the findings on cluster opening: The closed NB₉ and NB₁₁ skeletons of 35 and 43 are stable toward oxidation and reduction and toward Brønsted and Lewis acids. The closo-NB₁₁ skeleton is opened by anionic or neutral bases to give a nido-NB₁₁ skeleton with a nonplanar pentagonal aperture; this nido skeleton is stable towards degradation by bases. This is in striking contrast to the behaviour of the isoelectronic C₂B₁₀ skeleton, which undergoes a degradative opening with bases to give the nido-C₂B₉ skeleton, whose planar pentagonal aperture is the basis for the synthesis of so many dicarbametalla-closo-dodecaboranes. The isoelectronic nido-NB₁₀ clusters are not available from closo-NB₁₁ systems and have to be synthesized by an alternative method. The closo-NB₉ skeleton can be opened by amines, if no excess is applied, but will be opened and degraded by protic bases in excess.

Degradative Opening of closo-RNB9H9

The closo-NB₉ skeleton is transformed into the nido-NB₈ skeleton in a sufficiently polar, aprotic medium such as thf as has been shown for RNB₉H₉ with R = p-ClC₆H₄, p- MeC_6H_4 , $PhCH_2^{[13]}$; the *nido* anion $[RNB_8H_9]^-$ (9) is the product. The expelled boron atom is found in a borazine molecule (HBNiPr)₃, if iPrNH₂ is the attacking base [Eq. (13)], but will be detected in the anion BF₄⁻, if fluorides such as [NBu₄]F or [S(NMe₂)₃][Me₃SiF₂] are the degrading agents, according to reactions of unknown stoichiometry. The reaction of RNB₉H₉ with iPrNH₂ or other primary amines in the less polar solvent CH₂Cl₂, on the other hand, yields the arachno-NB₈ species RNB₈H₁₀(NH₂R') [12; Eq. (14)]^[13].

Applications of Azaboranes

The nitrogen-bound amino group in the anion $[(Me_2N)NB_9H_{12}]^-$ [19; Eq. (15)] can be treated with MeI to form (Me₃N)NB₉H₁₂^[25]. This product and similar ones are reported to be useful as blowing agents, in electrical resistors, and as reducing agents^[71].

- [1] [1a] T. L. Heying, J. W. Ager, S. L. Clark, D. J. Mangold, H. L. Goldstein, M. Hillman, R. J. Polak, J. W. Szymanski, *Inorg. Chem.* 1963, 2, 1089. [1b] M. M. Fein, J. Bobinski, N. Mayes, N. Schwartz, M. S. Cohen, *Inorg. Chem.* 1963, 2, 1111. [1c] L. I. Zakharkin, V. I. Stanko, V. A. Brattsev, Y. A. Chapovskii, Y. T. Struchkov, *Izv. Akad. Nauk SSSR, Ser. Khim.* **1963**, 2069.
- J. Plešek, B. Štibr, S. Heřmánek, Chem. Ind. (London) 1974, 662.
- A. Arafat, J. Baer, J. C. Huffman, L. J. Todd, Inorg. Chem. 1986,
- J. Müller, J. Runsink, P. Paetzold, Angew. Chem. 1991, 103, 201; Angew. Chem., Int. Ed. Engl. **1991**, 30, 175.
- P. Paetzold, B. Redenz-Stormanns, R. Boese, M. Bühl, P. v. R. Schleyer, Angew. Chem. 1990, 102, 1059; Angew. Chem. Int. Ed. Engl. 1990, 29, 1059.
- M. Müller, T. Wagner, U. Englert, P. Paetzold, Chem. Ber. 1995,
- S. Küpper, U. Englert, P. Paetzold, Heteroatom Chem. 1990,
- M. Müller, U. Englert, P. Paetzold, Chem. Ber. 1995, 128, 1105.
- [9] R. Boese, B. Kröckert, P. Paetzold, Chem. Ber. 1987, 120, 1913. [10] P. Paetzold, B. Redenz-Stormanns, R. Boese, Chem. Ber. 1991, *124*, 2435.
- [11] S. Kuepper, P. Paetzold, R. Boese, Chem. Ber. 1993, 126, 1787.
- [12] T. Jelinek, J. D. Kennedy, B. Stibr, J. Chem. Soc., Chem. Commun. 1993, 1628.
- [13] M. Roth, P. Paetzold, Chem. Ber. 1995, 128, 1221.
- [14] J. Bould, N. P. Rath, L. Barton, Organometallics 1996, 15, 4916.
- [15] K. Baše, J. Plešek, S. Heřmánek, J. Huffman, P. Ragatz, R. Schaeffer, J. Chem. Soc., Chem. Commun. 1975, 934.

 [16] T. Jelínek, B. Stibr, J. D. Kennedy, Collect. Czech. Chem. Com-
- mun. 1994, 59, 2244.
- [17] R. Lewin, P. G. Simpson, W. N. Lipscomb, J. Chem. Phys. 1963, 39, 1532.
- [18] K. Baše, F. Hanousek, J. Plešek, B. Štibr, A. Lycka, J. Chem. Soc., Chem. Commun. 1981, 1162.
- [19] J. G. Kester, J. C. Huffman, L. J. Todd, *Inorg. Chem.* 1988, 27, 4528
- [20] J. Müller, P. Paetzold, U. Englert, J. Runsink, Chem. Ber. 1992,
- [21] F. Meyer, J. Müller, M. U. Schmidt, P. Paetzold, Inorg. Chem. **1993**, 32, 5053.
- [22] F. Meyer, M. U. Schmidt, P. Paetzold, Chem. Ber. 1995, 128,
- [23] R. Roth, P. Paetzold, Coll. Czech. Chem. Commun. 1997, 62,
- [24] J. H. Jones, B. Stibr, J. D. Kennedy, M. Thornton-Pett, Inorg. Chim. Acta 1994, 227, 163.
- [25] W. R. Hertler, F. Klanberg, E. L. Muetterties, Inorg. Chem. **1967**, 6, 1696.
- [26] B. Stibr, J. Holub, T. Jelínek, X. L. R. Fontaine, J. Fusek, J. D. Kennedy, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. **1996**. 1741
- [27] B. Štibr, J. D. Kennedy, T. Jelínek, J. Chem. Soc., Chem. Commun. 1990, 1309
- J. Holub, T. Jelínek, J. Plešek, B. Štibr, S. Heřmánek, J. D. Kennedy, J. Chem. Soc., Chem. Commun. 1991, 1389.
- [29] F. Meyer, Dissertation, Technische Hochschule Aachen, 1993. ^[30] E.
- Leuschner, Dissertation, Technische Hochschule Aachen, 1997
- [31] J. Müller, P. Paetzold, R. Boese, Heteroatom Chem. 1990, 1, 461.
- [32] J. Plešek, S. Heřmánek, Pure Appl. Chem. 1974, 39, 431. [33] V. A. Brattsev, S. P. Knyazev, G. N. Danilova, V. I. Stanko, *Zh. Obshch. Khim.* **1975**, *45*, 1393.
- [34] S. O. Kang, G. T. Furst, L. G. Sneddon, *Inorg. Chem.* 1989, 28, 2339.
- [35] P. Lomme, F. Meyer, U. Englert, P. Paetzold, Chem. Ber. 1995, *128*, 1225
- [36] F. Meyer, J. Müller, P. Paetzold, R. Boese, Angew. Chem. 1992, 104, 1221; Angew. Chem. Int. Ed. Engl. 1992, 31, 1227.
- [37] A. E. Wille, K. Su, P. J. Carroll, L. G. Sneddon, J. Am. Chem. Soc. 1996, 118, 6407.
- [38] T. Jelínek, J. D. Kennedy, B. Štibr, J. Chem. Soc., Chem. Commun. 1994, 677
- [39] L. Schneider, U. Englert, P. Paetzold, Z. Anorg. Allg. Chem. **1994**, 620, 1191.
- [40] U. Doerfler, J. D, Kennedy, L. Barton, C. M. Collins, N. P. Rath, J. Chem. Soc., Dalton Trans. 1997, 707.
- [41] K. Baše, M. Bown, X. L. R. Fontaine, N. N. Greenwood, J.

- D. Kennedy, B. Stibr, M. Thornton-Pett, J. Chem. Soc., Chem. Commun. 1988, 1240.
- [42] M. Müller, U. Englert, P. Paetzold, *Inorg. Chem.* **1995**, *34*, 5925.
- [43] H. P. Hansen, J. Müller, U. Englert, P. Paetzold, Angew. Chem. 1991, 103, 1357; Angew. Chem. Int. Ed. Engl. 1991, 10, 1377.
 [44] H.-P. Hansen, U. Englert, P. Paetzold, Z. Anorg. Allg. Chem. 1997, 621, 710.

- 1995, 621, 719.
 [45] J. Plešek, S. Heřmánek, J. Huffman, P. Ragatz, R. Schaeffer, J. Chem. Soc., Chem. Commun. 1975, 935.
 [46] K. Nestor, X. L. R. Fontaine, J. D. Kennedy, B. Štibr, K. Baše, M. Thornton-Pett, Collect. Czech. Chem. Commun. 1991, 56, 1467.
- [47] D. Hnyk, M. Bühl, P. v. R. Schleyer, H. V. Volden, S. Gund-
- ersen, J. Müller, P. Paetzold, *Inorg. Chem.* **1993**, *32*, 2442.

 [48] L. Schneider, U. Englert, P. Paetzold, *Chem. Ber.* **1994**, *127*, 87.

 [49] P. Lomme, M. Roth, U. Englert, P. Paetzold, *Chem. Ber.* **1996**,
- 129, 1227. [50] L. J. Todd, A. Arafat, J. Baer, J. C. Huffman in *Advances in Boron and the Boranes* (Eds.: J. F. Liebman, A. Greenberg, R. E. Williams), VCH, Weinheim, 1988, p. 287
- E. Williams), vc11, weinitelli, 1906, p. 201.

 [51] P. Paetzold, *Pure Appl. Chem.* 1991, 63, 345.

 [52] P. Paetzold, J. Müller, F. Meyer, H.-P. Hansen, L. Schneider, *Pure Appl. Chem.* 1994, 66, 255.
- [53] W. Dirk, E. Leuschner, P. Lomme, P. Paetzold, M. Roth in Advances in Boron Chemistry (Ed.: W. Siebert), The Royal Society of Chemistry, Cambridge, 1997, p. 399.

 [54] K. Baše, Collect. Czech. Chem. Commun. 1983, 48, 2593.
- [55] B. M. Graybill, A. R. Pitochelli, M. F. Hawthorne, *Inorg. Chem.* **1962**, 1, 626.
- [56] R. Zahradník, V. Balaji, J. Michl, J. Comput. Chem. 1991, 12,

- [57] M. Bühl, P. v. R. Schleyer, Z. Havlas, D. Hnyk, S. Heřmánek, Inorg. Chem. 1991, 30, 3107.
- [58] S. Heřmánek, D. Hnyk, Z. Havlas, J. Chem. Soc., Chem. Commun. 1989, 1859.
- [59] T. P. Fehlner, P. T. Czech, R. F. Fenske, Inorg. Chem. 1990,
- 1. F. Fehmer, A. 2.
 29, 3103.
 [60] W. N. Lipscomb, Angew. Chem. 1977, 89, 685.
 [61] W. Jian, C. B. Knobler, M. D. Mortimer, M. F. Hawthorne, Angew. Chem. 1995, 107, 1470; Angew. Chem., Int. Ed. Engl. 1905, 24, 1332
- [62] W. L. Smith, B. J. Meneghelli, N. McClure, R. W. Rudolph, J. Am. Chem. Soc. 1976, 98, 624.
- [63] W. L. Smith, B. J. Meneghelli, D. A. Thompson, P. Klymko, N.
- McClure, M. Bower, *Inorg. Chem.* **1977**, *16*, 3008. [64] J. Plešek, S. Heřmánek, *J. Chem. Soc., Chem. Commun.* **1975**,
- [65] R. J. Wiersema, M. F. Hawthorne, *Inorg. Chem.* 1973, 12, 785.
- [66] Z. Xie, D. Liston, T. Jelínek, V. Mitro, R. Bau, C. A. Reed, J. Chem. Soc., Chem. Commun. 1993, 384.
- [67] S. V. Ivanov, J. J. Rockwell, S. M. Miller, O. P. Anderson, K. A. Solntsev, S. H. Strauss, Inorg. Chem. 1966, 35, 7882.
- [68] T. Jelínek, J. Plešek, S. Heřmánek, B. Stibr, Collect. Czech. Chem. Commun. 1986, 51, 819.
- [69] T. Jelinek, P. Baldwin, W. R. Scheidt, C. A. Reed, Inorg. Chem.
- 1993, 32, 1982.

 [70] Z. Xie, T. Jelínek, R. Bau, C. A. Reed, J. Am. Chem. Soc. 1994, 116, 1907.
- [71] E. I. du Pont de Nemours, and Co. (W. R. Hertler, Inv.), US-Pat. 3,428,439 (February 18, 1969) [*Chem. Abstr.* **1969**, 70, 96154x].